3.4.81 \(\int \frac {\cos ^{\frac {5}{2}}(c+d x)}{(a+a \sec (c+d x))^2} \, dx\) [381]

Optimal. Leaf size=160 \[ \frac {56 E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{5 a^2 d}-\frac {5 F\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{a^2 d}-\frac {5 \sqrt {\cos (c+d x)} \sin (c+d x)}{a^2 d}+\frac {56 \cos ^{\frac {3}{2}}(c+d x) \sin (c+d x)}{15 a^2 d}-\frac {3 \cos ^{\frac {3}{2}}(c+d x) \sin (c+d x)}{a^2 d (1+\sec (c+d x))}-\frac {\cos ^{\frac {3}{2}}(c+d x) \sin (c+d x)}{3 d (a+a \sec (c+d x))^2} \]

[Out]

56/5*(cos(1/2*d*x+1/2*c)^2)^(1/2)/cos(1/2*d*x+1/2*c)*EllipticE(sin(1/2*d*x+1/2*c),2^(1/2))/a^2/d-5*(cos(1/2*d*
x+1/2*c)^2)^(1/2)/cos(1/2*d*x+1/2*c)*EllipticF(sin(1/2*d*x+1/2*c),2^(1/2))/a^2/d+56/15*cos(d*x+c)^(3/2)*sin(d*
x+c)/a^2/d-3*cos(d*x+c)^(3/2)*sin(d*x+c)/a^2/d/(1+sec(d*x+c))-1/3*cos(d*x+c)^(3/2)*sin(d*x+c)/d/(a+a*sec(d*x+c
))^2-5*sin(d*x+c)*cos(d*x+c)^(1/2)/a^2/d

________________________________________________________________________________________

Rubi [A]
time = 0.20, antiderivative size = 160, normalized size of antiderivative = 1.00, number of steps used = 10, number of rules used = 8, integrand size = 23, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.348, Rules used = {4349, 3902, 4105, 3872, 3854, 3856, 2719, 2720} \begin {gather*} -\frac {5 F\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{a^2 d}+\frac {56 E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{5 a^2 d}+\frac {56 \sin (c+d x) \cos ^{\frac {3}{2}}(c+d x)}{15 a^2 d}-\frac {5 \sin (c+d x) \sqrt {\cos (c+d x)}}{a^2 d}-\frac {3 \sin (c+d x) \cos ^{\frac {3}{2}}(c+d x)}{a^2 d (\sec (c+d x)+1)}-\frac {\sin (c+d x) \cos ^{\frac {3}{2}}(c+d x)}{3 d (a \sec (c+d x)+a)^2} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[Cos[c + d*x]^(5/2)/(a + a*Sec[c + d*x])^2,x]

[Out]

(56*EllipticE[(c + d*x)/2, 2])/(5*a^2*d) - (5*EllipticF[(c + d*x)/2, 2])/(a^2*d) - (5*Sqrt[Cos[c + d*x]]*Sin[c
 + d*x])/(a^2*d) + (56*Cos[c + d*x]^(3/2)*Sin[c + d*x])/(15*a^2*d) - (3*Cos[c + d*x]^(3/2)*Sin[c + d*x])/(a^2*
d*(1 + Sec[c + d*x])) - (Cos[c + d*x]^(3/2)*Sin[c + d*x])/(3*d*(a + a*Sec[c + d*x])^2)

Rule 2719

Int[Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticE[(1/2)*(c - Pi/2 + d*x), 2], x] /; FreeQ[{
c, d}, x]

Rule 2720

Int[1/Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticF[(1/2)*(c - Pi/2 + d*x), 2], x] /; FreeQ
[{c, d}, x]

Rule 3854

Int[(csc[(c_.) + (d_.)*(x_)]*(b_.))^(n_), x_Symbol] :> Simp[Cos[c + d*x]*((b*Csc[c + d*x])^(n + 1)/(b*d*n)), x
] + Dist[(n + 1)/(b^2*n), Int[(b*Csc[c + d*x])^(n + 2), x], x] /; FreeQ[{b, c, d}, x] && LtQ[n, -1] && Integer
Q[2*n]

Rule 3856

Int[(csc[(c_.) + (d_.)*(x_)]*(b_.))^(n_), x_Symbol] :> Dist[(b*Csc[c + d*x])^n*Sin[c + d*x]^n, Int[1/Sin[c + d
*x]^n, x], x] /; FreeQ[{b, c, d}, x] && EqQ[n^2, 1/4]

Rule 3872

Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_.)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)), x_Symbol] :> Dist[a, Int[(d*
Csc[e + f*x])^n, x], x] + Dist[b/d, Int[(d*Csc[e + f*x])^(n + 1), x], x] /; FreeQ[{a, b, d, e, f, n}, x]

Rule 3902

Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_), x_Symbol] :> Simp[(-Cot[
e + f*x])*(a + b*Csc[e + f*x])^m*((d*Csc[e + f*x])^n/(f*(2*m + 1))), x] + Dist[1/(a^2*(2*m + 1)), Int[(a + b*C
sc[e + f*x])^(m + 1)*(d*Csc[e + f*x])^n*(a*(2*m + n + 1) - b*(m + n + 1)*Csc[e + f*x]), x], x] /; FreeQ[{a, b,
 d, e, f, n}, x] && EqQ[a^2 - b^2, 0] && LtQ[m, -1] && (IntegersQ[2*m, 2*n] || IntegerQ[m])

Rule 4105

Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_)*(csc[(e_.) + (f_.)*(x_)]*
(B_.) + (A_)), x_Symbol] :> Simp[(-(A*b - a*B))*Cot[e + f*x]*(a + b*Csc[e + f*x])^m*((d*Csc[e + f*x])^n/(b*f*(
2*m + 1))), x] - Dist[1/(a^2*(2*m + 1)), Int[(a + b*Csc[e + f*x])^(m + 1)*(d*Csc[e + f*x])^n*Simp[b*B*n - a*A*
(2*m + n + 1) + (A*b - a*B)*(m + n + 1)*Csc[e + f*x], x], x], x] /; FreeQ[{a, b, d, e, f, A, B, n}, x] && NeQ[
A*b - a*B, 0] && EqQ[a^2 - b^2, 0] && LtQ[m, -2^(-1)] &&  !GtQ[n, 0]

Rule 4349

Int[(u_)*((c_.)*sin[(a_.) + (b_.)*(x_)])^(m_.), x_Symbol] :> Dist[(c*Csc[a + b*x])^m*(c*Sin[a + b*x])^m, Int[A
ctivateTrig[u]/(c*Csc[a + b*x])^m, x], x] /; FreeQ[{a, b, c, m}, x] &&  !IntegerQ[m] && KnownSecantIntegrandQ[
u, x]

Rubi steps

\begin {align*} \int \frac {\cos ^{\frac {5}{2}}(c+d x)}{(a+a \sec (c+d x))^2} \, dx &=\left (\sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \int \frac {1}{\sec ^{\frac {5}{2}}(c+d x) (a+a \sec (c+d x))^2} \, dx\\ &=-\frac {\cos ^{\frac {3}{2}}(c+d x) \sin (c+d x)}{3 d (a+a \sec (c+d x))^2}-\frac {\left (\sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \int \frac {-\frac {11 a}{2}+\frac {7}{2} a \sec (c+d x)}{\sec ^{\frac {5}{2}}(c+d x) (a+a \sec (c+d x))} \, dx}{3 a^2}\\ &=-\frac {3 \cos ^{\frac {3}{2}}(c+d x) \sin (c+d x)}{a^2 d (1+\sec (c+d x))}-\frac {\cos ^{\frac {3}{2}}(c+d x) \sin (c+d x)}{3 d (a+a \sec (c+d x))^2}-\frac {\left (\sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \int \frac {-28 a^2+\frac {45}{2} a^2 \sec (c+d x)}{\sec ^{\frac {5}{2}}(c+d x)} \, dx}{3 a^4}\\ &=-\frac {3 \cos ^{\frac {3}{2}}(c+d x) \sin (c+d x)}{a^2 d (1+\sec (c+d x))}-\frac {\cos ^{\frac {3}{2}}(c+d x) \sin (c+d x)}{3 d (a+a \sec (c+d x))^2}-\frac {\left (15 \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \int \frac {1}{\sec ^{\frac {3}{2}}(c+d x)} \, dx}{2 a^2}+\frac {\left (28 \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \int \frac {1}{\sec ^{\frac {5}{2}}(c+d x)} \, dx}{3 a^2}\\ &=-\frac {5 \sqrt {\cos (c+d x)} \sin (c+d x)}{a^2 d}+\frac {56 \cos ^{\frac {3}{2}}(c+d x) \sin (c+d x)}{15 a^2 d}-\frac {3 \cos ^{\frac {3}{2}}(c+d x) \sin (c+d x)}{a^2 d (1+\sec (c+d x))}-\frac {\cos ^{\frac {3}{2}}(c+d x) \sin (c+d x)}{3 d (a+a \sec (c+d x))^2}-\frac {\left (5 \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \int \sqrt {\sec (c+d x)} \, dx}{2 a^2}+\frac {\left (28 \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \int \frac {1}{\sqrt {\sec (c+d x)}} \, dx}{5 a^2}\\ &=-\frac {5 \sqrt {\cos (c+d x)} \sin (c+d x)}{a^2 d}+\frac {56 \cos ^{\frac {3}{2}}(c+d x) \sin (c+d x)}{15 a^2 d}-\frac {3 \cos ^{\frac {3}{2}}(c+d x) \sin (c+d x)}{a^2 d (1+\sec (c+d x))}-\frac {\cos ^{\frac {3}{2}}(c+d x) \sin (c+d x)}{3 d (a+a \sec (c+d x))^2}-\frac {5 \int \frac {1}{\sqrt {\cos (c+d x)}} \, dx}{2 a^2}+\frac {28 \int \sqrt {\cos (c+d x)} \, dx}{5 a^2}\\ &=\frac {56 E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{5 a^2 d}-\frac {5 F\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{a^2 d}-\frac {5 \sqrt {\cos (c+d x)} \sin (c+d x)}{a^2 d}+\frac {56 \cos ^{\frac {3}{2}}(c+d x) \sin (c+d x)}{15 a^2 d}-\frac {3 \cos ^{\frac {3}{2}}(c+d x) \sin (c+d x)}{a^2 d (1+\sec (c+d x))}-\frac {\cos ^{\frac {3}{2}}(c+d x) \sin (c+d x)}{3 d (a+a \sec (c+d x))^2}\\ \end {align*}

________________________________________________________________________________________

Mathematica [C] Result contains higher order function than in optimal. Order 5 vs. order 4 in optimal.
time = 2.39, size = 366, normalized size = 2.29 \begin {gather*} \frac {\cos ^4\left (\frac {1}{2} (c+d x)\right ) \left (\frac {4 i \sqrt {2} e^{-i (c+d x)} \left (56 \left (1+e^{2 i (c+d x)}\right )+56 \left (-1+e^{2 i c}\right ) \sqrt {1+e^{2 i (c+d x)}} \, _2F_1\left (-\frac {1}{4},\frac {1}{2};\frac {3}{4};-e^{2 i (c+d x)}\right )+25 e^{i (c+d x)} \left (-1+e^{2 i c}\right ) \sqrt {1+e^{2 i (c+d x)}} \, _2F_1\left (\frac {1}{4},\frac {1}{2};\frac {5}{4};-e^{2 i (c+d x)}\right )\right ) \sec ^2(c+d x)}{d \left (-1+e^{2 i c}\right ) \sqrt {e^{-i (c+d x)} \left (1+e^{2 i (c+d x)}\right )}}+\frac {2 \left (-216 \cot (c)-120 \csc (c)-40 \cos (d x) \sin (c)+6 \cos (2 d x) \sin (2 c)-120 \sec \left (\frac {c}{2}\right ) \sec \left (\frac {1}{2} (c+d x)\right ) \sin \left (\frac {d x}{2}\right )+5 \sec \left (\frac {c}{2}\right ) \sec ^3\left (\frac {1}{2} (c+d x)\right ) \sin \left (\frac {d x}{2}\right )-40 \cos (c) \sin (d x)+6 \cos (2 c) \sin (2 d x)+5 \sec ^2\left (\frac {1}{2} (c+d x)\right ) \tan \left (\frac {c}{2}\right )\right )}{3 d \cos ^{\frac {3}{2}}(c+d x)}\right )}{5 a^2 (1+\sec (c+d x))^2} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[Cos[c + d*x]^(5/2)/(a + a*Sec[c + d*x])^2,x]

[Out]

(Cos[(c + d*x)/2]^4*(((4*I)*Sqrt[2]*(56*(1 + E^((2*I)*(c + d*x))) + 56*(-1 + E^((2*I)*c))*Sqrt[1 + E^((2*I)*(c
 + d*x))]*Hypergeometric2F1[-1/4, 1/2, 3/4, -E^((2*I)*(c + d*x))] + 25*E^(I*(c + d*x))*(-1 + E^((2*I)*c))*Sqrt
[1 + E^((2*I)*(c + d*x))]*Hypergeometric2F1[1/4, 1/2, 5/4, -E^((2*I)*(c + d*x))])*Sec[c + d*x]^2)/(d*E^(I*(c +
 d*x))*(-1 + E^((2*I)*c))*Sqrt[(1 + E^((2*I)*(c + d*x)))/E^(I*(c + d*x))]) + (2*(-216*Cot[c] - 120*Csc[c] - 40
*Cos[d*x]*Sin[c] + 6*Cos[2*d*x]*Sin[2*c] - 120*Sec[c/2]*Sec[(c + d*x)/2]*Sin[(d*x)/2] + 5*Sec[c/2]*Sec[(c + d*
x)/2]^3*Sin[(d*x)/2] - 40*Cos[c]*Sin[d*x] + 6*Cos[2*c]*Sin[2*d*x] + 5*Sec[(c + d*x)/2]^2*Tan[c/2]))/(3*d*Cos[c
 + d*x]^(3/2))))/(5*a^2*(1 + Sec[c + d*x])^2)

________________________________________________________________________________________

Maple [A]
time = 0.10, size = 283, normalized size = 1.77

method result size
default \(-\frac {\sqrt {\left (2 \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1\right ) \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}\, \left (96 \left (\cos ^{10}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-352 \left (\cos ^{8}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+120 \left (\cos ^{6}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-150 \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {-2 \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+1}\, \EllipticF \left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right ) \left (\cos ^{3}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-336 \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {-2 \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+1}\, \left (\cos ^{3}\left (\frac {d x}{2}+\frac {c}{2}\right )\right ) \EllipticE \left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )+266 \left (\cos ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-135 \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+5\right )}{30 a^{2} \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{3} \sqrt {-2 \left (\sin ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )}\, \sin \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {2 \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1}\, d}\) \(283\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(cos(d*x+c)^(5/2)/(a+a*sec(d*x+c))^2,x,method=_RETURNVERBOSE)

[Out]

-1/30*((2*cos(1/2*d*x+1/2*c)^2-1)*sin(1/2*d*x+1/2*c)^2)^(1/2)*(96*cos(1/2*d*x+1/2*c)^10-352*cos(1/2*d*x+1/2*c)
^8+120*cos(1/2*d*x+1/2*c)^6-150*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(-2*cos(1/2*d*x+1/2*c)^2+1)^(1/2)*EllipticF(cos(1
/2*d*x+1/2*c),2^(1/2))*cos(1/2*d*x+1/2*c)^3-336*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(-2*cos(1/2*d*x+1/2*c)^2+1)^(1/2)
*cos(1/2*d*x+1/2*c)^3*EllipticE(cos(1/2*d*x+1/2*c),2^(1/2))+266*cos(1/2*d*x+1/2*c)^4-135*cos(1/2*d*x+1/2*c)^2+
5)/a^2/cos(1/2*d*x+1/2*c)^3/(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)/sin(1/2*d*x+1/2*c)/(2*cos(1/2
*d*x+1/2*c)^2-1)^(1/2)/d

________________________________________________________________________________________

Maxima [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Failed to integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)^(5/2)/(a+a*sec(d*x+c))^2,x, algorithm="maxima")

[Out]

integrate(cos(d*x + c)^(5/2)/(a*sec(d*x + c) + a)^2, x)

________________________________________________________________________________________

Fricas [C] Result contains higher order function than in optimal. Order 9 vs. order 4.
time = 0.75, size = 288, normalized size = 1.80 \begin {gather*} \frac {2 \, {\left (6 \, \cos \left (d x + c\right )^{3} - 8 \, \cos \left (d x + c\right )^{2} - 94 \, \cos \left (d x + c\right ) - 75\right )} \sqrt {\cos \left (d x + c\right )} \sin \left (d x + c\right ) - 75 \, {\left (-i \, \sqrt {2} \cos \left (d x + c\right )^{2} - 2 i \, \sqrt {2} \cos \left (d x + c\right ) - i \, \sqrt {2}\right )} {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) + i \, \sin \left (d x + c\right )\right ) - 75 \, {\left (i \, \sqrt {2} \cos \left (d x + c\right )^{2} + 2 i \, \sqrt {2} \cos \left (d x + c\right ) + i \, \sqrt {2}\right )} {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) - i \, \sin \left (d x + c\right )\right ) - 168 \, {\left (-i \, \sqrt {2} \cos \left (d x + c\right )^{2} - 2 i \, \sqrt {2} \cos \left (d x + c\right ) - i \, \sqrt {2}\right )} {\rm weierstrassZeta}\left (-4, 0, {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) + i \, \sin \left (d x + c\right )\right )\right ) - 168 \, {\left (i \, \sqrt {2} \cos \left (d x + c\right )^{2} + 2 i \, \sqrt {2} \cos \left (d x + c\right ) + i \, \sqrt {2}\right )} {\rm weierstrassZeta}\left (-4, 0, {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) - i \, \sin \left (d x + c\right )\right )\right )}{30 \, {\left (a^{2} d \cos \left (d x + c\right )^{2} + 2 \, a^{2} d \cos \left (d x + c\right ) + a^{2} d\right )}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)^(5/2)/(a+a*sec(d*x+c))^2,x, algorithm="fricas")

[Out]

1/30*(2*(6*cos(d*x + c)^3 - 8*cos(d*x + c)^2 - 94*cos(d*x + c) - 75)*sqrt(cos(d*x + c))*sin(d*x + c) - 75*(-I*
sqrt(2)*cos(d*x + c)^2 - 2*I*sqrt(2)*cos(d*x + c) - I*sqrt(2))*weierstrassPInverse(-4, 0, cos(d*x + c) + I*sin
(d*x + c)) - 75*(I*sqrt(2)*cos(d*x + c)^2 + 2*I*sqrt(2)*cos(d*x + c) + I*sqrt(2))*weierstrassPInverse(-4, 0, c
os(d*x + c) - I*sin(d*x + c)) - 168*(-I*sqrt(2)*cos(d*x + c)^2 - 2*I*sqrt(2)*cos(d*x + c) - I*sqrt(2))*weierst
rassZeta(-4, 0, weierstrassPInverse(-4, 0, cos(d*x + c) + I*sin(d*x + c))) - 168*(I*sqrt(2)*cos(d*x + c)^2 + 2
*I*sqrt(2)*cos(d*x + c) + I*sqrt(2))*weierstrassZeta(-4, 0, weierstrassPInverse(-4, 0, cos(d*x + c) - I*sin(d*
x + c))))/(a^2*d*cos(d*x + c)^2 + 2*a^2*d*cos(d*x + c) + a^2*d)

________________________________________________________________________________________

Sympy [F(-2)]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Exception raised: SystemError} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)**(5/2)/(a+a*sec(d*x+c))**2,x)

[Out]

Exception raised: SystemError >> excessive stack use: stack is 8011 deep

________________________________________________________________________________________

Giac [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {could not integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)^(5/2)/(a+a*sec(d*x+c))^2,x, algorithm="giac")

[Out]

integrate(cos(d*x + c)^(5/2)/(a*sec(d*x + c) + a)^2, x)

________________________________________________________________________________________

Mupad [F]
time = 0.00, size = -1, normalized size = -0.01 \begin {gather*} \int \frac {{\cos \left (c+d\,x\right )}^{5/2}}{{\left (a+\frac {a}{\cos \left (c+d\,x\right )}\right )}^2} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(cos(c + d*x)^(5/2)/(a + a/cos(c + d*x))^2,x)

[Out]

int(cos(c + d*x)^(5/2)/(a + a/cos(c + d*x))^2, x)

________________________________________________________________________________________